LineareAlgebra.Matrizen01 History

Hide minor edits - Show changes to output

September 17, 2014, at 11:47 PM by 217.250.78.165 -
Changed lines 23-24 from:
{$ M  = \left( \begin{array}{ccc}0,8&0,3&0,2\\0,1&0,5&0,1\\0,1&0,2&0,7\end{array} \right) \qquad
\vec{k}_0=\left(\begin{array}{c}24000 \\12000\\24000\end{array} \right) $}
to:
\[ M  = \left( \begin{array}{ccc}0,8&0,3&0,2\\0,1&0,5&0,1\\0,1&0,2&0,7\end{array} \right) \qquad
\vec{k}_0=\left(\begin{array}{c}24000 \\12000\\24000\end{array} \right) \]
Changed lines 13-14 from:
{$$ \vec{v}=\left(\begin{array}{c}v_1 \\ \vdots \\ v_n \end{array}\right) $$}
to:
\[ \vec{v}=\left(\begin{array}{c}v_1 \\ \vdots \\ v_n \end{array}\right) \]
Changed lines 16-17 from:
{$$ A\cdot\vec{v}=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1m}\\\vdots &&\vdots\\ a_{n1}&\cdots&a_{nm}\end{array}\right) \cdot \left(\begin{array}{c}v_1 \\ \vdots \\ v_m \end{array}\right)= \left(\begin{array}{c}a_{11}\cdot v_1 + a_{12}\cdot v_2 + \cdots + a_{1m}\cdot v_m\\ a_{21}\cdot v_1 + a_{22}\cdot v_2 + \cdots + a_{2m}\cdot v_m\\ \vdots \\ a_{n1}\cdot v_1+  a_{n2}\cdot v_2+\cdots +a_{nm}\cdot v_m \end{array}\right) $$}
to:
\[ A\cdot\vec{v}=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1m}\\\vdots &&\vdots\\ a_{n1}&\cdots&a_{nm}\end{array}\right) \cdot \left(\begin{array}{c}v_1 \\ \vdots \\ v_m \end{array}\right)= \left(\begin{array}{c}a_{11}\cdot v_1 + a_{12}\cdot v_2 + \cdots + a_{1m}\cdot v_m\\ a_{21}\cdot v_1 + a_{22}\cdot v_2 + \cdots + a_{2m}\cdot v_m\\ \vdots \\ a_{n1}\cdot v_1+  a_{n2}\cdot v_2+\cdots +a_{nm}\cdot v_m \end{array}\right) \]
Changed line 28 from:
{$$ \vec{k}_1=M\cdot\vec{k}_0  =
to:
\[ \vec{k}_1=M\cdot\vec{k}_0  =
Changed line 31 from:
\left(\begin{array}{c}27600 \\10800\\21600\end{array} \right) $$}
to:
\left(\begin{array}{c}27600 \\10800\\21600\end{array} \right) \]
Changed line 7 from:
{$$ M=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1m}\\\vdots &&\vdots\\ a_{n1}&\cdots&a_{nm}\end{array}\right) $$}
to:
\[ M=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1m}\\\vdots &&\vdots\\ a_{n1}&\cdots&a_{nm}\end{array}\right) \]
Changed line 5 from:
'''Definition:''' Ein rechteckiges Zahlenschema mit n Zeilen und m Spalten nennt man {$(n,m)$}-Matrix oder {$n\times m$}-Matrix (n "Kreuz" m).
to:
'''Definition:''' Ein rechteckiges Zahlenschema mit n Zeilen und m Spalten nennt man $(n,m)$-Matrix oder $n\times m$-Matrix (n "Kreuz" m).
Changed lines 13-14 from:
{$ \vec{v}=\left(\begin{array}{c}v_1 \\ \vdots \\ v_n \end{array}\right) $}
to:
{$$ \vec{v}=\left(\begin{array}{c}v_1 \\ \vdots \\ v_n \end{array}\right) $$}
Changed line 16 from:
{$ A\cdot\vec{v}=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1m}\\\vdots &&\vdots\\ a_{n1}&\cdots&a_{nm}\end{array}\right) \cdot \left(\begin{array}{c}v_1 \\ \vdots \\ v_m \end{array}\right)= \left(\begin{array}{c}a_{11}\cdot v_1 + a_{12}\cdot v_2 + \cdots + a_{1m}\cdot v_m\\ a_{21}\cdot v_1 + a_{22}\cdot v_2 + \cdots + a_{2m}\cdot v_m\\ \vdots \\ a_{n1}\cdot v_1+  a_{n2}\cdot v_2+\cdots +a_{nm}\cdot v_m \end{array}\right) $}
to:
{$$ A\cdot\vec{v}=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1m}\\\vdots &&\vdots\\ a_{n1}&\cdots&a_{nm}\end{array}\right) \cdot \left(\begin{array}{c}v_1 \\ \vdots \\ v_m \end{array}\right)= \left(\begin{array}{c}a_{11}\cdot v_1 + a_{12}\cdot v_2 + \cdots + a_{1m}\cdot v_m\\ a_{21}\cdot v_1 + a_{22}\cdot v_2 + \cdots + a_{2m}\cdot v_m\\ \vdots \\ a_{n1}\cdot v_1+  a_{n2}\cdot v_2+\cdots +a_{nm}\cdot v_m \end{array}\right) $$}
Changed line 7 from:
{$ M=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1m}\\\vdots &&\vdots\\ a_{n1}&\cdots&a_{nm}\end{array}\right) $}
to:
{$$ M=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1m}\\\vdots &&\vdots\\ a_{n1}&\cdots&a_{nm}\end{array}\right) $$}
Changed lines 13-14 from:
{$$ \vec{v}=\left(\begin{array}{c}v_1 \\ \vdots \\ v_n \end{array}\right) $$}
to:
{$ \vec{v}=\left(\begin{array}{c}v_1 \\ \vdots \\ v_n \end{array}\right) $}
Changed lines 16-17 from:
{$$A\cdot\vec{v}=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1m}\\\vdots &&\vdots\\ a_{n1}&\cdots&a_{nm}\end{array}\right) \cdot \left(\begin{array}{c}v_1 \\ \vdots \\ v_m \end{array}\right)= \left(\begin{array}{c}a_{11}\cdot v_1 + a_{12}\cdot v_2 + \cdots + a_{1m}\cdot v_m\\ a_{21}\cdot v_1 + a_{22}\cdot v_2 + \cdots + a_{2m}\cdot v_m\\ \vdots \\ a_{n1}\cdot v_1+  a_{n2}\cdot v_2+\cdots +a_{nm}\cdot v_m \end{array}\right)$$}
to:
{$ A\cdot\vec{v}=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1m}\\\vdots &&\vdots\\ a_{n1}&\cdots&a_{nm}\end{array}\right) \cdot \left(\begin{array}{c}v_1 \\ \vdots \\ v_m \end{array}\right)= \left(\begin{array}{c}a_{11}\cdot v_1 + a_{12}\cdot v_2 + \cdots + a_{1m}\cdot v_m\\ a_{21}\cdot v_1 + a_{22}\cdot v_2 + \cdots + a_{2m}\cdot v_m\\ \vdots \\ a_{n1}\cdot v_1+  a_{n2}\cdot v_2+\cdots +a_{nm}\cdot v_m \end{array}\right) $}
Changed lines 23-24 from:
{$$ M  = \left( \begin{array}{ccc}0,8&0,3&0,2\\0,1&0,5&0,1\\0,1&0,2&0,7\end{array} \right) \qquad
\vec{k}_0=\left(\begin{array}{c}24000 \\12000\\24000\end{array} \right) $$}
to:
{$ M  = \left( \begin{array}{ccc}0,8&0,3&0,2\\0,1&0,5&0,1\\0,1&0,2&0,7\end{array} \right) \qquad
\vec{k}_0=\left(\begin{array}{c}24000 \\12000\\24000\end{array} \right) $}
Changed line 7 from:
{$$ M=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1m}\\\vdots &&\vdots\\ a_{n1}&\cdots&a_{nm}\end{array}\right) $$}
to:
{$ M=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1m}\\\vdots &&\vdots\\ a_{n1}&\cdots&a_{nm}\end{array}\right) $}
Changed lines 7-8 from:
\[ M=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1m}\\\vdots &&\vdots\\ a_{n1}&\cdots&a_{nm}\end{array}\right) \]
to:
{$$ M=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1m}\\\vdots &&\vdots\\ a_{n1}&\cdots&a_{nm}\end{array}\right) $$}
Changed lines 23-24 from:
\[ M  = \left( \begin{array}{ccc}0,8&0,3&0,2\\0,1&0,5&0,1\\0,1&0,2&0,7\end{array} \right) \qquad
\vec{k}_0=\left(\begin{array}{c}24000 \\12000\\24000\end{array} \right) \]
to:
{$$ M  = \left( \begin{array}{ccc}0,8&0,3&0,2\\0,1&0,5&0,1\\0,1&0,2&0,7\end{array} \right) \qquad
\vec{k}_0=\left(\begin{array}{c}24000 \\12000\\24000\end{array} \right) $$}
Changed line 7 from:
{$$ M=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1m}\\\vdots &&\vdots\\ a_{n1}&\cdots&a_{nm}\end{array}\right) $$}
to:
\[ M=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1m}\\\vdots &&\vdots\\ a_{n1}&\cdots&a_{nm}\end{array}\right) \]
Changed lines 23-24 from:
{$$ M  = \left( \begin{array}{ccc}0,8&0,3&0,2\\0,1&0,5&0,1\\0,1&0,2&0,7\end{array} \right) \qquad
\vec{k}_0=\left(\begin{array}{c}24000 \\12000\\24000\end{array} \right) $$}
to:
\[ M  = \left( \begin{array}{ccc}0,8&0,3&0,2\\0,1&0,5&0,1\\0,1&0,2&0,7\end{array} \right) \qquad
\vec{k}_0=\left(\begin{array}{c}24000 \\12000\\24000\end{array} \right) \]
Changed lines 21-22 from:
a) In unserem Prozess mit der Käuferwanderung erhielten wir eine Übergangsmatrix {$M$} mit den Übergangsraten und einen Startvektor {$\vec{k}_0$} mit den Käuferzahlen zu Beginn:
to:
a) In unserem Prozess mit der Käuferwanderung erhielten wir eine Übergangsmatrix {$M$} mit den Übergangsraten und einen Startvektor {$\vec{k}_0$} mit den Käuferzahlen zu Beginn:  
Added line 25:
Added line 27:
Added line 32:
Changed lines 22-25 from:
{$$
M  = \left( \begin{array}{ccc}0,8&0,3&0,2\\0,1&0,5&0,1\\0,1&0,2&0,7\end{array} \right) \qquad
\vec{k}_0=\left(\begin{array}{c}24000 \\12000\\24000\end{array} \right)
$$}
to:
{$$ M  = \left( \begin{array}{ccc}0,8&0,3&0,2\\0,1&0,5&0,1\\0,1&0,2&0,7\end{array} \right) \qquad
\vec{k}_0=\left(\begin{array}{c}24000 \\12000\\24000\end{array} \right) $$}
Changed lines 25-26 from:
{$$
\vec{k}_1=M\cdot\vec{k}_0  =
to:
{$$ \vec{k}_1=M\cdot\vec{k}_0  =
Changed lines 28-29 from:
\left(\begin{array}{c}27600 \\10800\\21600\end{array} \right)
$$}
to:
\left(\begin{array}{c}27600 \\10800\\21600\end{array} \right) $$}
Changed line 22 from:
$$
to:
{$$
Changed line 25 from:
$$
to:
$$}
Changed line 27 from:
$$
to:
{$$
Changed line 32 from:
$$
to:
$$}
Changed line 7 from:
$$ M=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1m}\\\vdots &&\vdots\\ a_{n1}&\cdots&a_{nm}\end{array}\right) $$
to:
{$$ M=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1m}\\\vdots &&\vdots\\ a_{n1}&\cdots&a_{nm}\end{array}\right) $$}
December 02, 2009, at 08:05 PM by 84.173.91.145 -
Changed lines 7-8 from:
{$$ M=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1m}\\\vdots &&\vdots\\ a_{n1}&\cdots&a_{nm}\end{array}\right) $$}
to:
$$ M=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1m}\\\vdots &&\vdots\\ a_{n1}&\cdots&a_{nm}\end{array}\right) $$
November 14, 2009, at 12:30 PM by 84.173.117.20 -
Changed line 1 from:
%right% [[Matrizen02]]
to:
%right% Matrizen01 [[Matrizen02|>>]]
Changed lines 35-38 from:
*[[Aufgaben01|Übungsaufgaben]] zum Matrix-Vektor-Produkt
to:
*[[Aufgaben01|Übungsaufgaben]] zum Matrix-Vektor-Produkt


%right% Matrizen01 [[Matrizen02|>>]]
November 14, 2009, at 09:27 AM by 84.173.86.193 -
Changed lines 33-35 from:
b) {$\left(\begin{array}{ccc}2 & 5 & -3 \\ -1 &2&7\end{array}\right)\cdot \left(\begin{array}{c}12\\ -6 \\ 8\end{array}\right) = \left(\begin{array}{ccccc} 2\cdot 12& +& 5\cdot(-6)&+&(-3)\cdot8\\(-1)\cdot12&+&2\cdot(-6)&+&7\cdot 8\end{array}\right) = \left(\begin{array}{c}-30\\32\end{array}\right)$}
to:
b) {$\left(\begin{array}{ccc}2 & 5 & -3 \\ -1 &2&7\end{array}\right)\cdot \left(\begin{array}{c}12\\ -6 \\ 8\end{array}\right) = \left(\begin{array}{ccccc} 2\cdot 12& +& 5\cdot(-6)&+&(-3)\cdot8\\(-1)\cdot12&+&2\cdot(-6)&+&7\cdot 8\end{array}\right) = \left(\begin{array}{c}-30\\32\end{array}\right)$}

*[[Aufgaben01|Übungsaufgaben]] zum Matrix-Vektor-Produkt
November 13, 2009, at 10:19 PM by 84.173.91.254 -
Changed line 1 from:
%right [[Matrizen02]]
to:
%right% [[Matrizen02]]
November 13, 2009, at 10:19 PM by 84.173.91.254 -
Added line 1:
%right [[Matrizen02]]
November 13, 2009, at 09:04 PM by 84.173.91.254 -
Added lines 1-32:
!!Matrix-Vektor-Multiplikation


'''Definition:''' Ein rechteckiges Zahlenschema mit n Zeilen und m Spalten nennt man {$(n,m)$}-Matrix oder {$n\times m$}-Matrix (n "Kreuz" m).

{$$ M=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1m}\\\vdots &&\vdots\\ a_{n1}&\cdots&a_{nm}\end{array}\right) $$}

Für das Matrixelement in der i-ten Zeile und der j-ten Spalte schreibt man {$a_{ij}$}. Die Matrix wird meist mit einem Großbuchstaben bezeichnet und das Zahlenschema in (runde oder eckige) Klammern gesetzt.

'''Definition:''' Eine (n,1)-Matrix nennt man auch n-dimensionalen '''Vektor''' oder genauer '''Spaltenvektor'''. Eine (1,m)-Matrix heißt entsprechend Zeilenvektor. Wir verwenden für Vektoren kleine Buchstaben mit Pfeilen darüber.

{$$ \vec{v}=\left(\begin{array}{c}v_1 \\ \vdots \\ v_n \end{array}\right) $$}

'''Definition:''' Das Produkt aus einer (n,m)-Matrix {$A$} und einem m-dimensionalen Vektor {$\vec{v}$} ist folgendermaßen erklärt:
{$$A\cdot\vec{v}=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1m}\\\vdots &&\vdots\\ a_{n1}&\cdots&a_{nm}\end{array}\right) \cdot \left(\begin{array}{c}v_1 \\ \vdots \\ v_m \end{array}\right)= \left(\begin{array}{c}a_{11}\cdot v_1 + a_{12}\cdot v_2 + \cdots + a_{1m}\cdot v_m\\ a_{21}\cdot v_1 + a_{22}\cdot v_2 + \cdots + a_{2m}\cdot v_m\\ \vdots \\ a_{n1}\cdot v_1+  a_{n2}\cdot v_2+\cdots +a_{nm}\cdot v_m \end{array}\right)$$}

Das '''Matrix-Vektor-Produkt''' ist also selbst wieder ein Vektor, allerdings mit '''n''' Einträgen.

'''Beispiele:'''
a) In unserem Prozess mit der Käuferwanderung erhielten wir eine Übergangsmatrix {$M$} mit den Übergangsraten und einen Startvektor {$\vec{k}_0$} mit den Käuferzahlen zu Beginn:
$$
M  = \left( \begin{array}{ccc}0,8&0,3&0,2\\0,1&0,5&0,1\\0,1&0,2&0,7\end{array} \right) \qquad
\vec{k}_0=\left(\begin{array}{c}24000 \\12000\\24000\end{array} \right)
$$
Zu den Käuferzahlen der nächsten Woche kam man dann durch Multiplikation der Matrix mit dem Käufervektor:
$$
\vec{k}_1=M\cdot\vec{k}_0  =
\left( \begin{array}{ccc}0,8&0,3&0,2\\0,1&0,5&0,1\\0,1&0,2&0,7\end{array} \right) \cdot
\left(\begin{array}{c}24000 \\12000\\24000\end{array} \right)=
\left(\begin{array}{c}27600 \\10800\\21600\end{array} \right)
$$
b) {$\left(\begin{array}{ccc}2 & 5 & -3 \\ -1 &2&7\end{array}\right)\cdot \left(\begin{array}{c}12\\ -6 \\ 8\end{array}\right) = \left(\begin{array}{ccccc} 2\cdot 12& +& 5\cdot(-6)&+&(-3)\cdot8\\(-1)\cdot12&+&2\cdot(-6)&+&7\cdot 8\end{array}\right) = \left(\begin{array}{c}-30\\32\end{array}\right)$}