Abiturprüfung 2008

Aufgabe 1

Analysis

Mathematik

Leistungskursanforderungen

Gegeben sei die Funktionsschar f_n mit :

$$f_n(x) = x^2 \cdot e^{n \cdot x}$$
 $n \in \mathbb{N}$; $x \in \mathbb{R}$

- 1.1 Bestimmen Sie alle
 - Nullstellen
 - Asymptoten
 - Extremstellen
 - Maxima und Minima
 - Wendestellen

dieser Scharfunktionen.

Zeigen Sie unter anderem, dass die 2. Ableitung von $f_n(x)$ die folgende Gestalt besitzt:

$$f_n''(x) = (n^2 \cdot x^2 + 4 \cdot n \cdot x + 2) \cdot e^{n \cdot x}$$

- 1.2 Geben Sie die Kurve an, auf der alle Maxima und Minima liegen .
- 1.3 Skizzieren Sie die Graphen der Scharfunktionen f_n .
- 1.4 Berechnen Sie alle Stammfunktionen einer Scharfunktion $f_n(x)$.
- 1.5 Ermitteln Sie die Größe der Fläche A_n , die zwischen dem Graphen einer Scharfunktion $f_n(x)$ und der negativen x-Achse im Intervall zwischen dem Maximum und dem Ursprung liegt.
- 1.6 Mit $F_n(\mathbf{x})$ ($\mathbf{n} \in \mathbf{N}$) seien folgende Integralfunktionen bezeichnet:

$$F_n(x) = \int_{-\infty}^{x} f_n(t) dt$$

Bearbeiten Sie folgende Aufgaben und begründen Sie Ihre Antwort.

- 1.6.1 Zeigen Sie, dass das uneigentliche Integral existiert?
- 1.6.2 Besitzen die jeweiligen Scharfunktionen $F_n(x)$ Nullstellen?
- 1.6.3 Zeigen Sie, dass alle Funktionen der Schar $F_n(x)$ Extremwerte und Wendepunkte besitzen, und geben Sie diese an.
- 1.6.4 Um welchen Typ handelt es sich bei dem Extremwert von $F_n(x)$?

Abiturprüfung 2008 Aufgabe 2

Lineare Algebra – Übergangsmatrizen

Mathematik

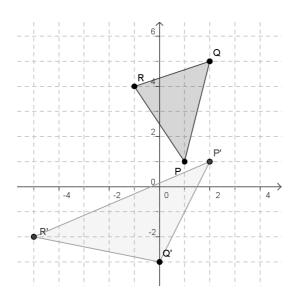
Leistungskursanforderungen

Infektionsgefahr In dieser Aufgabe soll der Verlauf einer ansteckenden Krankheit in einer Population untersucht werden. Innerhalb eines Monats erkranken 20% der Gesunden. Von den Kranken bleiben 25% krank und 75% genesen innerhalb eines Monats wieder.

- 2.1 Geben Sie ein Übergangsdiagramm (Gozintograph) an, das diesen Krankheitsverlauf für einen Zeitraum von einem Monat beschreibt.
- 2.2 Bestimmen Sie die Übergangsmatrix für diesen Zeitraum und für den Zeitraum von zwei Monaten.
- 2.3 Berechnen Sie die Eigenwerte und Eigenvektoren der Übergangsmatrix.
- 2.4 Welche Grundannahmen muss man machen, wenn man diese Übergangsmatrix zu Prognosezwecken nutzen will? Ist ein solches Modell zur Beschreibung des Krankheitsverlaufs sinnvoll?
- 2.5 In einer Population von 1900 Personen bricht die Krankheit aus (das heißt zu Beginn sind alle gesund). Wie sieht der Krankheitsverlauf in den nächsten drei Monaten aus?
- 2.6 Wie sieht die längerfristige Verteilung in dieser Population aus? Begründen Sie genau!
- 2.7 Zeigen Sie, dass in der Population von 1900 Personen die Anzahl der Kranken nach n Monaten durch folgende Funktion beschrieben wird:

$$f(n) = 400 \cdot (1 - 0.05^n)$$

2.8 Wie ändern sich Gozintograph und Übergangsmatrix, wenn die wieder Genesenen eine höhere Widerstandskraft haben, und deshalb von diesen nur 10% in einem Monat wieder erkranken?


Abiturprüfung 2008 Aufgabe 3

Lineare Algebra – Abbildungsmatrizen

Mathematik

Leistungskursanforderungen

- 3.1 Bestimmen Sie die affine Abbildung $A: \vec{x} \mapsto M\vec{x} + \vec{v}$, die das Dreieck PQR in der dargestellten Weise abbildet.
- 3.2 Bestimmen Sie alle Fixpunkte der affinen Abbildung.
- 3.3 Bestimmen Sie die Eigenwerte und Eigenvektoren der Matrix M.
- 3.4 Bestimmen Sie die inverse Matrix M^{-1} und damit die inverse Abbildung A^{-1} , die die Abbildung A rückgängig macht.
- 3.5 Seien $\vec{r} = \binom{2}{6}$ und $\vec{s} = \binom{2}{-1}$. Berechnen Sie $M^7 \cdot \vec{r}$, $M^8 \cdot \vec{r}$, $M^7 \cdot \vec{s}$ und $M^8 \cdot \vec{s}$. Was fällt auf? Begründen Sie.

Abiturprüfung 2008

Aufgabe 4

Wahrscheinlichkeitstheorie und Statistik

Mathematik

Leistungskursanforderungen

Die Betreiber eines Bio-Bauernhofes, auf dem fast nur Apfelbäume angepflanzt wurden, bieten lediglich Äpfel zum Verkauf an. Von 100 Äpfeln waren dabei durchschnittlich 30 von einem bestimmten Insekt befallen, das, ohne dass man es von außen her erkannte, sich im Kernraum eines Apfels eingenistet hatte. Dies führte dazu, dass 20 dieser befallenen Äpfel bald nach der Ernte zu faulen begannen. Von den restlichen Äpfeln, die nicht von diesem Insekt befallen waren, faulten 10 Äpfel bald nach der Ernte.

4.1 Erstellen Sie anhand der gegebenen Daten einen Baum, der den Insektenbefall (I) der Äpfel und die Situation, dass einer dieser Äpfel faul (F) oder nicht faul (\overline{F}) wird, wiedergibt.

Die sich aus dem anfänglichen Text ergebenden Zahlen, stellen im folgenden auch gleichzeitig die Wahrscheinlichkeiten dar, mit der die verschiedenen Ereignisse eintreten.

4.2 Bestimmen Sie die folgenden Wahrscheinlichkeiten **nur** mit Hilfe der Wahrscheinlichkeiten, die Sie **aus dem Baum** (siehe 4.1) entnehmen können :

- 4.2.1 $p_I(F)$ und $p(I \cap F)$
- 4.2.2 Mit welcher Wahrscheinlichkeit wird ein Apfel faul?
- 4.3 Um die Qualität der zum Verkauf angebotenen Äpfel zu verbessern, haben die Hofbesitzer ein Verfahren entwickelt, durch das sie die schnell faulenden Äpfel von den sogenannten "Guten Äpfeln" trennen können. Bestimmen Sie nun die Wahrscheinlichkeit, mit der sich ein vom Insekt befallener Apfel unter den "Guten Äpfeln" befindet.

Geben Sie den formalen Term für diese Wahrscheinlichkeit an. Zu seiner Berechnung dürfen Sie nur Werte aus dem Baum oder aus Aufgabe 4.2 verwenden.

Aufgabe 4 - LK - 2. Seite

Als Bezugsmenge dient in den restlichen Aufgaben nur noch die Menge der "Guten Äpfel". Das Ereignis E tritt dabei ein, wenn ein guter Apfel von einem Insekt befallen ist.

Begründen Sie kurz, dass gilt:
$$\mathbf{p}(\mathbf{E}) = \frac{1}{7}$$

- 4.4 Aus einer großen Kiste, voll mit "Guten Äpfeln", werden nacheinander 10 Äpfel herausgenommen. Wie groß ist die Wahrscheinlichkeit, dass:
 - 4.4.1 mehr als zwei Äpfel
 - 4.4.2 höchstens neun Äpfel

von einem Insekt befallen sind?

Geben Sie bei dieser Aufgabe auch den Term an, der zum Zahlenwert der entsprechenden Wahrscheinlichkeit führt.

- 4.5 Karl möchte seinem ärgsten Feind Theo Äpfel schenken. Wie viele Äpfel müsste er aus der Kiste entnehmen, damit die Chance, dass mindestens ein vom Insekt befallener Apfel dabei ist, größer als 60 % ist?
- 4.6 Ein Großbauer, der selbst Äpfel anbaut, traut dem Trennungsverfahren des Bio-Bauernhofes nicht. Er möchte daher einen Test (Signifikanzniveau: 5%) machen, um die angegebene Wahrscheinlichkeit zu überprüfen. Dazu kauft er 100 "Gute Äpfel" und schneidet sie alle durch. Bei 29 Äpfeln stellt er einen Insektenbefall fest. Welche Schlussfolgerung könnte er daraus ziehen?
- 4.7 Um die Güte des Sortierverfahrens noch einmal zu überprüfen, lässt der Bio-Bauernhof ein Gutachten von einer Fremdfirma erstellen, die ebenfalls eine Untersuchung bei 100 Äpfeln vornimmt. Diese sollen nach der Untersuchung zu Most verarbeitet werden. Die Fremdfirma möchte dabei die Hypothese: "Der Anteil ist so groß, wie es der Bio-Bauernhof angegeben hat" mit einer Wahrscheinlichkeit von höchstens 20% verwerfen.
 - 4.7.1 Bestimmen Sie den Ablehnungsbereich.
 - 4.7.2 Beschreiben Sie mit eigenen Worten das Risiko 2.Art.
 - 4.7.3 Wie groß war, nachdem der tatsächliche Anteil von 25% an schlechten Äpfeln bekannt wurde, das Risiko der Fremdfirma, einen Fehler 2. Art zu begehen?

Hilfsangaben

Für die beurteilende Statistik sei folgende Tabelle gegeben

Wahrscheinlichkeit	Radius	Wahrscheinlichkeit	Radius		
0,80 0,90 0,95	1,28σ 1,64σ 1,96σ	0,975 0,99	2,33σ 2,58σ		

Weiterhin sei eine Tabelle zur Binomialverteilung für n=100 gegeben . Insbesondere sind hier die Werte für die F(n,p,k) bis auf vier Nachkommastellen aufgeführt :

	р	1/7	0.25		р	1/7	0.25		р	1/7	0.25
k				k				k			
0		0.0000	0.0000	34		1.0000	0.9836	68		1.0000	1.0000
1		0.0000	0.0000	35		1.0000	0.9906	69		1.0000	1.0000
2		0.0000	0.0000	36		1.0000	0.9948	70		1.0000	1.0000
3		0.0002	0.0000	37		1.0000	0.9973	71		1.0000	1.0000
4		0.0008	0.0000	38		1.0000	0.9986	72		1.0000	1.0000
5		0.0027	0.0000	39		1.0000	0.9993	73		1.0000	1.0000
6		0.0078	0.0000	40		1.0000	0.9997	74		1.0000	1.0000
7		0.0193	0.0000	41		1.0000	0.9999	75		1.0000	1.0000
8		0.0415	0.0000	42		1.0000	0.9999	76		1.0000	1.0000
9		0.0794	0.0000	43		1.0000	1.0000	77		1.0000	1.0000
10		0.1369	0.0001	44		1.0000	1.0000	78		1.0000	1.0000
11		0.2155	0.0004	45		1.0000	1.0000	79		1.0000	1.0000
12		0.3127	0.0010	46		1.0000	1.0000	80		1.0000	1.0000
13		0.4225	0.0025	47		1.0000	1.0000	81		1.0000	1.0000
14		0.5363	0.0054	48		1.0000	1.0000	82		1.0000	1.0000
15		0.6453	0.0111	49		1.0000	1.0000	83		1.0000	1.0000
16		0.7418	0.0211	50		1.0000	1.0000	84		1.0000	1.0000
17		0.8214	0.0376	51		1.0000	1.0000	85		1.0000	1.0000
18		0.8827	0.0630	52		1.0000	1.0000	86		1.0000	1.0000
19		0.9268	0.0995	53		1.0000	1.0000	87		1.0000	1.0000
20		0.9566	0.1488	54		1.0000	1.0000	88		1.0000	1.0000
21		0.9755	0.2114	55		1.0000	1.0000	89		1.0000	1.0000
22		0.9869	0.2864	56		1.0000	1.0000	90		1.0000	1.0000
23		0.9933	0.3711	57		1.0000	1.0000	91		1.0000	1.0000
24		0.9968	0.4617	58		1.0000	1.0000	92		1.0000	1.0000
25		0.9985	0.5535	59		1.0000	1.0000	93		1.0000	1.0000
26		0.9993	0.6417	60		1.0000	1.0000	94		1.0000	1.0000
27		0.9997	0.7224	61		1.0000	1.0000	95		1.0000	1.0000
28		0.9999	0.7925	62		1.0000	1.0000	96		1.0000	1.0000
29		1.0000	0.8505	63		1.0000	1.0000	97		1.0000	1.0000
30		1.0000	0.8962	64		1.0000	1.0000	98		1.0000	1.0000
31		1.0000	0.9307	65		1.0000	1.0000	99		1.0000	1.0000
32		1.0000	0.9554	66		1.0000	1.0000	100		1.0000	1.0000
33		1.0000	0.9724	67		1.0000	1.0000				