Eigenschaften von Polynomfunktionen: Verhalten für $x \to \pm \infty$

Zeichnen sie die Graphen der folgenden Funktionen mit Geogebra. Wie verhalten sich die Funktionen jeweils, wenn x sehr klein $(x \to -\infty)$ beziehungsweise sehr groß $(x \to +\infty)$ wird?

Funktionsgleichung	Verhalten für $x \to -\infty$	Verhalten für $x \to +\infty$
$f(x) = 2x^3 - 8x^2 + 5$		
$g(x) = 0.1x^4 - 5x + 5$		
$h(x) = x^9 + 10x^8 - 15x^6 + 6x$		
$p(x) = 10x^8 - 15x^6 + 6x$		
$q(x) = -15x^6 + 6x$		
$r(x) = 15x^6 + 6x$		
$s(x) = 0.1x^5 + x^4 - x + 1$		
$t(x) = -0.1x^5 + x^4 - x + 1$		
$u(x) = 0.1x^6 + x^4 - x + 1$		
$v(x) = 0.1x^6 - x^4 - x + 1$		

Stellen sie eine Vermutung für eine Gesetzmäßigkeit -wenn möglich mit Begründung- auf und überprüfen sie diese an selbstgewählten Beispielen.

L			