LineareAlgebra.Abbildungen12 History

Hide minor edits - Show changes to output

November 16, 2010, at 12:50 AM by 84.173.113.47 -
Deleted lines 2-33:
!! Bestimmung der Eigenwerte und Eigenvektoren einer gegebenen Matrix M

Es gilt:
$$(M-\lambda\cdot E_n)\cdot\vec{w}=\vec{0}$$
Da {$\vec{w}=\vec{0}$} kann {$(M-\lambda\cdot E_n)$} nicht invertierbar sein. Ihre Determinante muss = 0 sein.


Im Beispiel:
$$M-\lambda\cdot E_n = \left(\begin{array}{cc} 2&4\\0&3\end{array}\right)-\left(\begin{array}{cc} \lambda&0\\0&\lambda\end{array}\right)=\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)$$
$$det\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)=(2-\lambda)\cdot(3-\lambda)-4\cdot0$$

Hier kann man die Nullstellen {$\lambda_1 =2 $} und {$\lambda_2 =3 $} leicht ablesen.

Hat man Eigenwerte bestimmt, löst man danach das Gleichungssystem {$ M\cdot \vec{x}=\lambda\cdot\vec{x}$}, um die Eigenvektoren zu bestimmen.

Beispiel:
$$det\left(\begin{array}{cc} 3-\lambda&2\\1&-2-\lambda\end{array}\right)=(3-\lambda)\cdot(-2-\lambda)=2=\lambda^2-\lambda-8$$

pq- Formel anwenden:
$$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}+{8}}$$
Man erhält für den Eigenwert {$\lambda_1 = \frac{1-\sqrt{33}}{2}$} und für den Eigenwert {$\lambda_2 =-\frac{1+\sqrt{33}}{2}$} .

Der {$\vec{v_1}$} zu {$\lambda_1$} :
$$M\cdot\vec{v}=\lambda_1\cdot\vec{v}$$
$$(M-\lambda\cdot E_n)\cdot\vec{w}=\vec{0}$$
$$\left[\left(\begin{array}{cc} 3&2\\1&-2\end{array}\right)-\left(\begin{array}{cc} \frac{1-\sqrt{33}}{2}&0\\0&\frac{1-\sqrt{33}}{2}\end{array}\right)\right]\cdot\left(\begin{array}{c} x\\y\end{array}\right)=\left(\begin{array}{c} 0\\0\end{array}\right)$$

Man erhält nun 2 lineare Gleichungssysteme, die man jeweils nach x und y auflöst.

Somit erhält man für den Vektor {$\vec{v_1}=\left(\begin{array}{c} 1\\\frac{-5+\sqrt{33}}{4}\end{array}\right)$}

Den Vektor {$\vec{v_2}$} zum Eigenwert {$\lambda_2 $} erhält man auf die gleiche Weise.
May 15, 2010, at 04:28 PM by 84.173.125.236 -
Changed lines 23-24 from:
Man bekommt für den Eigenwert {$\lambda_1 = \frac{1-\sqrt{33}}{2}$} und für den Eigenwert {$\lambda_2 =-\frac{1+\sqrt{33}}{2}$} .
to:
Man erhält für den Eigenwert {$\lambda_1 = \frac{1-\sqrt{33}}{2}$} und für den Eigenwert {$\lambda_2 =-\frac{1+\sqrt{33}}{2}$} .
May 15, 2010, at 04:27 PM by 84.173.125.236 -
Changed lines 23-24 from:
Man bekommt für den 1. Eigenwert {$\lambda_1 = \frac{1-\sqrt{33}}{2}$} und für den 2- Eigenwert {$\lambda_2 =-\frac{1+\sqrt{33}}{2}$} .
to:
Man bekommt für den Eigenwert {$\lambda_1 = \frac{1-\sqrt{33}}{2}$} und für den Eigenwert {$\lambda_2 =-\frac{1+\sqrt{33}}{2}$} .
Changed lines 32-34 from:
Somit erhält man für den {$\vec{v_1}=\left(\begin{array}{c} 1\\\frac{-5+\sqrt{33}}{4}\end{array}\right)$}

Den 2. Vektor {$\vec{v_2}$} zum 2.Eigenwert {$\lambda_2 $} erhält man auf die gleiche Weise.
to:
Somit erhält man für den Vektor {$\vec{v_1}=\left(\begin{array}{c} 1\\\frac{-5+\sqrt{33}}{4}\end{array}\right)$}

Den Vektor {$\vec{v_2}$} zum Eigenwert {$\lambda_2 $} erhält man auf die gleiche Weise.
May 15, 2010, at 04:26 PM by 84.173.125.236 -
Changed lines 23-24 from:
$$\lambda_1 = \frac{1-\sqrt{33}}{2}$$ und $$\lambda_2 =-\frac{1+\sqrt{33}}{2}$$
to:
Man bekommt für den 1. Eigenwert {$\lambda_1 = \frac{1-\sqrt{33}}{2}$} und für den 2- Eigenwert {$\lambda_2 =-\frac{1+\sqrt{33}}{2}$} .
May 15, 2010, at 04:24 PM by 84.173.125.236 -
Changed lines 23-24 from:
$$\lambda_1 = \frac{1-\sqrt{33}}{2}$} und {$\lambda_2 =-\frac{1+\sqrt{33}}{2}$$
to:
$$\lambda_1 = \frac{1-\sqrt{33}}{2}$$ und $$\lambda_2 =-\frac{1+\sqrt{33}}{2}$$
May 15, 2010, at 04:23 PM by 84.173.125.236 -
Changed lines 22-24 from:
$$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}+{8}}$}
{
$\lambda_1 = \frac{1-\sqrt{33}}{2}$} und {$\lambda_2 =-\frac{1+\sqrt{33}}{2}$$
to:
$$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}+{8}}$$
$
$\lambda_1 = \frac{1-\sqrt{33}}{2}$} und {$\lambda_2 =-\frac{1+\sqrt{33}}{2}$$
May 15, 2010, at 04:22 PM by 84.173.125.236 -
Changed lines 11-15 from:

{$M-\lambda\cdot E_n = \left(\begin{array}{cc} 2&4\\0&3\end{array}\right)-\left(\begin{array}{cc} \lambda&0\\0&\lambda\end{array}\right)=\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)$}

{
$det\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)=(2-\lambda)\cdot(3-\lambda)-4\cdot0$}
to:
$$M-\lambda\cdot E_n = \left(\begin{array}{cc} 2&4\\0&3\end{array}\right)-\left(\begin{array}{cc} \lambda&0\\0&\lambda\end{array}\right)=\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)$$
$$
det\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)=(2-\lambda)\cdot(3-\lambda)-4\cdot0$$
Changed lines 19-21 from:

{$det\left(\begin{array}{cc} 3-\lambda&2\\1&-2-\lambda\end{array}\right)=(3-\lambda)\cdot(-2-\lambda)=2=\lambda^2-\lambda-8$}
to:
$$det\left(\begin{array}{cc} 3-\lambda&2\\1&-2-\lambda\end{array}\right)=(3-\lambda)\cdot(-2-\lambda)=2=\lambda^2-\lambda-8$$
Changed lines 22-25 from:

{$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}+{8}}$}
{$\lambda_1 = \frac{1-\sqrt{33}}{2}$} und {$\lambda_2 =-\frac{1+\sqrt{33}}{2}$}
to:
$$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}+{8}}$}
{$\lambda_1 = \frac{1-\sqrt{33}}{2}$} und {$\lambda_2 =-\frac{1+\sqrt{33}}{2}$$
May 15, 2010, at 03:19 PM by 84.173.125.236 -
Changed lines 36-38 from:
Somit erhält man für den {$\vec{v_1}=\left(\begin{array}{c} 1\\\frac{-5+\sqrt{33}}{4}\end{array}\right)$}
to:
Somit erhält man für den {$\vec{v_1}=\left(\begin{array}{c} 1\\\frac{-5+\sqrt{33}}{4}\end{array}\right)$}

Den 2. Vektor {$\vec{v_2}$} zum 2.Eigenwert {$\lambda_2 $} erhält man auf die gleiche Weise.
May 15, 2010, at 03:16 PM by 84.173.125.236 -
Changed line 36 from:
Somit erhält man für den {$\vec{v_1}=\left(\begin{array}{c} 1\\\frac{-5+\sqrt{33}}{4}\end{array}\right)
to:
Somit erhält man für den {$\vec{v_1}=\left(\begin{array}{c} 1\\\frac{-5+\sqrt{33}}{4}\end{array}\right)$}
May 15, 2010, at 03:16 PM by 84.173.125.236 -
Added lines 33-36:

Man erhält nun 2 lineare Gleichungssysteme, die man jeweils nach x und y auflöst.

Somit erhält man für den {$\vec{v_1}=\left(\begin{array}{c} 1\\\frac{-5+\sqrt{33}}{4}\end{array}\right)
May 15, 2010, at 03:11 PM by 84.173.125.236 -
Changed line 32 from:
$$\left[\left(\begin{array}{cc} 3&2\\1&-2\end{array}\right)-\left(\begin{array}{cc} \frac{1-\sqrt{33}}{2}&0\\0&\frac{1-\sqrt{33}}{2}\end{array}\right)\right]\cdot\left(\begin{array}{c} x\\y\ende{array}\right)=\left(\begin{array}{c} 0\\0\ende{array}\right)$$
to:
$$\left[\left(\begin{array}{cc} 3&2\\1&-2\end{array}\right)-\left(\begin{array}{cc} \frac{1-\sqrt{33}}{2}&0\\0&\frac{1-\sqrt{33}}{2}\end{array}\right)\right]\cdot\left(\begin{array}{c} x\\y\end{array}\right)=\left(\begin{array}{c} 0\\0\end{array}\right)$$
May 15, 2010, at 03:10 PM by 84.173.125.236 -
Changed lines 30-35 from:

{$M\cdot\vec{v}=\lambda_1\cdot\vec{v}$}

{
$(M-\lambda\cdot E_n)\cdot\vec{w}=\vec{0}$}

{
$\left[\left(\begin{array}{cc} 3&2\\1&-2\end{array}\right)-\left(\begin{array}{cc} \frac{1-\sqrt{33}}{2}&0\\0&\frac{1-\sqrt{33}}{2}\end{array}\right)\right]$}
to:
$$M\cdot\vec{v}=\lambda_1\cdot\vec{v}$$
$$(M-\lambda\cdot E_n)\cdot\vec{w}=\vec{0}$$
$$\left[\left(\begin{array}{cc} 3&2\\1&-2\end{array}\right)-\left(\begin{array}{cc} \frac{1-\sqrt{33}}{2}&0\\0&\frac{1-\sqrt{33}}{2}\end{array}\right)\right]\cdot\left(\begin{array}{c} x\\y\ende{array}\right)=\left(\begin{array}{c} 0\\0\ende{array}\right)$$
May 15, 2010, at 03:04 PM by 84.173.125.236 -
Added line 30:
Added line 32:
Added line 34:
May 15, 2010, at 03:04 PM by 84.173.125.236 -
Changed line 32 from:
{$\left\[\left(\begin{array}{cc} 3&2\\1&-2\end{array}\right)-\left(\begin{array}{cc} \frac{1-\sqrt{33}}{2}&0\\0&\frac{1-\sqrt{33}}{2}\end{array}\right)\right\]$}
to:
{$\left[\left(\begin{array}{cc} 3&2\\1&-2\end{array}\right)-\left(\begin{array}{cc} \frac{1-\sqrt{33}}{2}&0\\0&\frac{1-\sqrt{33}}{2}\end{array}\right)\right]$}
May 15, 2010, at 03:02 PM by 84.173.125.236 -
Changed line 30 from:
{$M\cdot\vec{v}=\lambda_1\cdot\vec{v}
to:
{$M\cdot\vec{v}=\lambda_1\cdot\vec{v}$}
Changed line 32 from:
\left\[\left(\begin{array}{cc} 3&2\\1&-2\end{array}\right)-\left(\begin{array}{cc} \frac{1-\sqrt{33}}{2}&0\\0&\frac{1-\sqrt{33}}{2}\end{array}\right)\right\]$}
to:
{$\left\[\left(\begin{array}{cc} 3&2\\1&-2\end{array}\right)-\left(\begin{array}{cc} \frac{1-\sqrt{33}}{2}&0\\0&\frac{1-\sqrt{33}}{2}\end{array}\right)\right\]$}
May 15, 2010, at 03:01 PM by 84.173.125.236 -
Changed lines 29-32 from:
Der {$\vec{v_1}$} zu {$\lambda_1$}
to:
Der {$\vec{v_1}$} zu {$\lambda_1$} :
{$M\cdot\vec{v}=\lambda_1\cdot\vec{v}
{$(M-\lambda\cdot E_n)\cdot\vec{w}=\vec{0}$}
\left\[\left(\begin{array}{cc} 3&2\\1&-2\end{array}\right)-\left(\begin{array}{cc} \frac{1-\sqrt{33}}{2}&0\\0&\frac{1-\sqrt{33}}{2}\end{array}\right)\right\]
$}
May 10, 2010, at 09:36 PM by 84.173.75.108 -
Added line 13:
May 10, 2010, at 09:36 PM by 84.173.75.108 -
Added line 11:
Added line 14:
May 10, 2010, at 09:35 PM by 84.173.75.108 -
Changed lines 11-12 from:
$$ M-\lambda\cdot E_n = \left(\begin{array}{cc} 2&4\\0&3\end{array}\right)-\left(\begin{array}{cc} \lambda&0\\0&\lambda\end{array}\right)=\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)$$
$$
det\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)=(2-\lambda)\cdot(3-\lambda)-4\cdot0$$
to:
{$M-\lambda\cdot E_n = \left(\begin{array}{cc} 2&4\\0&3\end{array}\right)-\left(\begin{array}{cc} \lambda&0\\0&\lambda\end{array}\right)=\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)$}
{
$det\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)=(2-\lambda)\cdot(3-\lambda)-4\cdot0$}
May 10, 2010, at 09:35 PM by 84.173.75.108 -
Changed line 26 from:
Der {\vec{v_1}$} zu {$\lambda_1$}
to:
Der {$\vec{v_1}$} zu {$\lambda_1$}
May 10, 2010, at 09:34 PM by 84.173.75.108 -
Added line 22:
Changed lines 24-26 from:
{$\lambda_1 = \frac{1-\sqrt{33}}{2}$} und {$\lambda_2 =-\frac{1+\sqrt{33}}{2}$}
to:
{$\lambda_1 = \frac{1-\sqrt{33}}{2}$} und {$\lambda_2 =-\frac{1+\sqrt{33}}{2}$}

Der {\vec{v_1}$} zu {$\lambda_1
$}
May 10, 2010, at 09:32 PM by 84.173.75.108 -
Added line 18:
Added line 20:
May 10, 2010, at 09:32 PM by 84.173.75.108 -
Changed line 18 from:
$$ det\left(\begin{array}{cc} 3-\lambda&2\\1&-2-\lambda\end{array}\right)=(3-\lambda)\cdot(-2-\lambda)=2=\lambda^2-\lambda-8$$
to:
{$det\left(\begin{array}{cc} 3-\lambda&2\\1&-2-\lambda\end{array}\right)=(3-\lambda)\cdot(-2-\lambda)=2=\lambda^2-\lambda-8$}
Changed line 20 from:
$$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}+{8}}$$
to:
{$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}+{8}}$}
May 10, 2010, at 09:31 PM by 84.173.75.108 -
Changed lines 20-21 from:
$$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}+{8}}$$
to:
$$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}+{8}}$$
{$\lambda_1 = \frac{1-\sqrt{33}}{2}$} und {$\lambda_2 =-\frac{1+\sqrt{33}}{2}$}
May 10, 2010, at 09:28 PM by 84.173.75.108 -
Changed line 20 from:
$$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}{8}}$$
to:
$$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}+{8}}$$
May 10, 2010, at 09:27 PM by 84.173.75.108 -
Changed line 20 from:
$$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}{8}}
to:
$$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}{8}}$$
May 10, 2010, at 09:27 PM by 84.173.75.108 -
Changed line 20 from:
$$\lambda_{1/2} = \frac{1}{2}$$ \frac{+}{-}
to:
$$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}{8}}
May 10, 2010, at 09:26 PM by 84.173.75.108 -
Changed line 20 from:
$$\lambda_{1/2} = \frac{1}{2}$$
to:
$$\lambda_{1/2} = \frac{1}{2}$$ \frac{+}{-}
May 10, 2010, at 09:25 PM by 84.173.75.108 -
Changed line 20 from:
$$\lambda_1/2 = \frac{1}{2}$$
to:
$$\lambda_{1/2} = \frac{1}{2}$$
May 10, 2010, at 09:24 PM by 84.173.75.108 -
Changed line 20 from:
$$\lambda_1_,_2 = \frac{1}{2}$$
to:
$$\lambda_1/2 = \frac{1}{2}$$
May 10, 2010, at 09:24 PM by 84.173.75.108 -
Changed line 20 from:
$$\lambda_"1,2" = \frac{1}{2}$$
to:
$$\lambda_1_,_2 = \frac{1}{2}$$
May 10, 2010, at 09:23 PM by 84.173.75.108 -
Changed line 20 from:
$$\lambda_(1,2) = \frac{1}{2}$$
to:
$$\lambda_"1,2" = \frac{1}{2}$$
May 10, 2010, at 09:23 PM by 84.173.75.108 -
Changed line 20 from:
$$\lambda_1,2 = \frac{1}{2}$$
to:
$$\lambda_(1,2) = \frac{1}{2}$$
May 10, 2010, at 09:23 PM by 84.173.75.108 -
Changed line 20 from:
$$\lambda_1,2 = \frac{1}\frac{2}$$
to:
$$\lambda_1,2 = \frac{1}{2}$$
May 10, 2010, at 09:22 PM by 84.173.75.108 -
Changed line 20 from:
$$\lambda_1,2 = \frac{1}\frac{2}
to:
$$\lambda_1,2 = \frac{1}\frac{2}$$
May 10, 2010, at 09:22 PM by 84.173.75.108 -
Changed lines 18-20 from:
$$ det\left(\begin{array}{cc} 3-\lambda&2\\1&-2-\lambda\end{array}\right)=(3-\lambda)\cdot(-2-\lambda)=2=\lambda^2-\lambda-8$$
to:
$$ det\left(\begin{array}{cc} 3-\lambda&2\\1&-2-\lambda\end{array}\right)=(3-\lambda)\cdot(-2-\lambda)=2=\lambda^2-\lambda-8$$
pq- Formel anwenden:
$$\lambda_1,2 = \frac{1}\frac{2}
May 10, 2010, at 09:16 PM by 84.173.75.108 -
Changed line 18 from:
$$ det\left(\begin{array}{cc} 3-\lambda&2\\1&-2-\lambda\end{array}\right)=(3-\lambda)\cdot(-2-\lambda)=2=\lambda^2-\lambda-8
to:
$$ det\left(\begin{array}{cc} 3-\lambda&2\\1&-2-\lambda\end{array}\right)=(3-\lambda)\cdot(-2-\lambda)=2=\lambda^2-\lambda-8$$
May 10, 2010, at 09:16 PM by 84.173.75.108 -
Added lines 16-18:

Beispiel:
$$ det\left(\begin{array}{cc} 3-\lambda&2\\1&-2-\lambda\end{array}\right)=(3-\lambda)\cdot(-2-\lambda)=2=\lambda^2-\lambda-8
May 10, 2010, at 09:10 PM by 84.173.75.108 -
Changed line 6 from:
$$[M-\lambda\cdot E_n]\cdot\vec{w}=\vec{0}$$
to:
$$(M-\lambda\cdot E_n)\cdot\vec{w}=\vec{0}$$
May 10, 2010, at 09:09 PM by 84.173.75.108 -
Changed line 6 from:
$$(M-\lambda\cdot E_n)\cdot\vec{w}=\vec{0}$$
to:
$$[M-\lambda\cdot E_n]\cdot\vec{w}=\vec{0}$$
May 10, 2010, at 09:09 PM by 84.173.75.108 -
Changed lines 3-4 from:
''Bestimmung der Eigenwerte und Eigenvektoren einer gegebenen Matrix M''
to:
!! Bestimmung der Eigenwerte und Eigenvektoren einer gegebenen Matrix M
Changed lines 13-15 from:
Hieraus ergeben sich für den {$Eigenwert_1 \lambda_1 =3 $}
to:
Hier kann man die Nullstellen {$\lambda_1 =2 $} und {$\lambda_2 =3 $} leicht ablesen.

Hat man Eigenwerte bestimmt, löst man danach das Gleichungssystem {$ M\cdot \vec{x}=\lambda\cdot\vec{x}$}, um die Eigenvektoren zu bestimmen.
May 10, 2010, at 09:04 PM by 84.173.75.108 -
Added line 2:
May 10, 2010, at 09:04 PM by 84.173.75.108 -
Changed lines 1-4 from:
'''Bestimmung der Eigenwerte und Eigenvektoren einer gegebenen Matrix M'''

\documentclass{article}
\begin{document}
to:
%right% [[Abbildungen11|<<]] Abbildungen12 [[Abbildungen13|>>]]
''Bestimmung der Eigenwerte und Eigenvektoren einer gegebenen Matrix
M''
Deleted line 4:
\end{document}
Changed lines 6-12 from:
\documentclass{article}
\begin{document}
Da
\end{document}\vec{w}=\vec{0}$$ kann $$(M-\lambda\cdot E_n)$$ nicht invertierbar sein. Ihre Determinante muss = 0 sein.

\documantclass{article}
\begin{document}
to:
Da {$\vec{w}=\vec{0}$} kann {$(M-\lambda\cdot E_n)$} nicht invertierbar sein. Ihre Determinante muss = 0 sein.

Deleted line 9:
\end{document}
Changed line 12 from:
Hieraus ergeben sich für den Eigenwert_1 \lambda_1 =3
to:
Hieraus ergeben sich für den {$Eigenwert_1 \lambda_1 =3 $}
May 10, 2010, at 08:55 PM by 84.173.75.108 -
Changed line 3 from:
\documantclass{article}
to:
\documentclass{article}
Changed line 8 from:
\documantclass{article}
to:
\documentclass{article}
May 10, 2010, at 08:55 PM by 84.173.75.108 -
Added lines 3-4:
\documantclass{article}
\begin{document}
Added line 6:
\end{document}
Changed lines 8-9 from:
Da $$\vec{w}=\vec{0}$$ kann $$(M-\lambda\cdot E_n)$$ nicht invertierbar sein. Ihre Determinante muss = 0 sein.
to:
\documantclass{article}
\begin{document}
Da
\end{document}\vec{w}=\vec{0}$$ kann $$(M-\lambda\cdot E_n)$$ nicht invertierbar sein. Ihre Determinante muss = 0 sein.

\documantclass{article}
\begin{document}
Added line 16:
\end{document}
May 10, 2010, at 08:49 PM by 84.173.75.108 -
Changed lines 8-10 from:
$$ M-\lambda\cdot E_n = \left(\begin{array}{cc} 2&4\\0&3\end{array}\right)-\left(\begin{array}{cc} \lambda&0\\0&\lambda\end{array}\right)=\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)$$
to:
$$ M-\lambda\cdot E_n = \left(\begin{array}{cc} 2&4\\0&3\end{array}\right)-\left(\begin{array}{cc} \lambda&0\\0&\lambda\end{array}\right)=\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)$$
$$ det\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)=(2-\lambda)\cdot(3-\lambda)-4\cdot0$$
Hieraus ergeben sich für den Eigenwert_1 \lambda_1 =3
May 10, 2010, at 08:46 PM by 84.173.75.108 -
Added line 6:
May 10, 2010, at 08:46 PM by 84.173.75.108 -
Changed line 7 from:
$$ M-\lambda\cdot E_n = \left(\begin{array}{cc} 2&4\\0&3\end{array}\right)-\left(\begin{array}{cc} \lambda&0\\0&\lambda\end{array}\right)=\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)
to:
$$ M-\lambda\cdot E_n = \left(\begin{array}{cc} 2&4\\0&3\end{array}\right)-\left(\begin{array}{cc} \lambda&0\\0&\lambda\end{array}\right)=\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)$$
May 10, 2010, at 08:46 PM by 84.173.75.108 -
Changed line 5 from:
Da #\vec{w}=\vec{0}# kann #(M-\lambda\cdot E_n)# nicht invertierbar sein. Ihre Determinante muss = 0 sein.
to:
Da $$\vec{w}=\vec{0}$$ kann $$(M-\lambda\cdot E_n)$$ nicht invertierbar sein. Ihre Determinante muss = 0 sein.
May 10, 2010, at 08:45 PM by 84.173.75.108 -
Changed line 5 from:
Da \vec{w}=\vec{0} kann (M-\lambda\cdot E_n) nicht invertierbar sein. Ihre Determinante muss = 0 sein.
to:
Da #\vec{w}=\vec{0}# kann #(M-\lambda\cdot E_n)# nicht invertierbar sein. Ihre Determinante muss = 0 sein.
May 10, 2010, at 08:38 PM by 84.173.75.108 -
Changed line 5 from:
Da [\vec{w}=\vec{0}] kann (M-\lambda\cdot E_n) nicht invertierbar sein. Ihre Determinante muss = 0 sein.
to:
Da \vec{w}=\vec{0} kann (M-\lambda\cdot E_n) nicht invertierbar sein. Ihre Determinante muss = 0 sein.
May 10, 2010, at 08:38 PM by 84.173.75.108 -
Changed line 5 from:
Da \vec{w}=\vec{0} kann (M-\lambda\cdot E_n) nicht invertierbar sein. Ihre Determinante muss = 0 sein.
to:
Da [\vec{w}=\vec{0}] kann (M-\lambda\cdot E_n) nicht invertierbar sein. Ihre Determinante muss = 0 sein.
May 10, 2010, at 08:37 PM by 84.173.75.108 -
Changed line 5 from:
Da $\vec{w}=\vec{0}$ kann $(M-\lambda\cdot E_n)$ nicht invertierbar sein. Ihre Determinante muss = 0 sein.
to:
Da \vec{w}=\vec{0} kann (M-\lambda\cdot E_n) nicht invertierbar sein. Ihre Determinante muss = 0 sein.
May 10, 2010, at 08:36 PM by 84.173.75.108 -
Changed line 5 from:
Da $$\vec{w}=\vec{0}$$ kann $$(M-\lambda\cdot E_n)$$ nicht invertierbar sein. Ihre Determinante muss = 0 sein.
to:
Da $\vec{w}=\vec{0}$ kann $(M-\lambda\cdot E_n)$ nicht invertierbar sein. Ihre Determinante muss = 0 sein.
May 10, 2010, at 08:36 PM by 84.173.75.108 -
Changed lines 4-7 from:
$$(M-\lambda\cdot E_n)\cdot\vec{w}=\vec{0}$$
to:
$$(M-\lambda\cdot E_n)\cdot\vec{w}=\vec{0}$$
Da $$\vec{w}=\vec{0}$$ kann $$(M-\lambda\cdot E_n)$$ nicht invertierbar sein. Ihre Determinante muss = 0 sein.
Im Beispiel:
$$ M-\lambda\cdot E_n = \left(\begin{array}{cc} 2&4\\0&3\end{array}\right)-\left(\begin{array}{cc} \lambda&0\\0&\lambda\end{array}\right)=\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)
May 10, 2010, at 08:31 PM by 84.173.75.108 -
Changed line 4 from:
$$M\cdot\vec{w}=\lambda\cdot\vec{w}$$
to:
$$(M-\lambda\cdot E_n)\cdot\vec{w}=\vec{0}$$
May 10, 2010, at 08:30 PM by 84.173.75.108 -
Changed line 4 from:
M\cdot\vec{w}=\lambda\cdot\vec{w}
to:
$$M\cdot\vec{w}=\lambda\cdot\vec{w}$$
May 10, 2010, at 08:29 PM by 84.173.75.108 -
May 10, 2010, at 08:29 PM by 84.173.75.108 -
Changed line 4 from:
M-\lambda\cdotE_n\cdot\vec{w}=\vec{0}
to:
M\cdot\vec{w}=\lambda\cdot\vec{w}
May 10, 2010, at 08:29 PM by 84.173.75.108 -
Changed line 4 from:
(M-\lambda\cdotE_n)\cdot\vec{w}=\vec{0}
to:
M-\lambda\cdotE_n\cdot\vec{w}=\vec{0}
May 10, 2010, at 08:28 PM by 84.173.75.108 -
Changed line 4 from:
(M-\lambda E_n) * \vec w = \vec 0
to:
(M-\lambda\cdotE_n)\cdot\vec{w}=\vec{0}
May 10, 2010, at 08:26 PM by 84.173.75.108 -
Changed lines 1-4 from:
'''Bestimmung der Eigenwerte und Eigenvektoren einer gegebenen Matrix M'''
to:
'''Bestimmung der Eigenwerte und Eigenvektoren einer gegebenen Matrix M'''

Es gilt:
(M-\lambda E_n) * \vec w = \vec 0
May 10, 2010, at 08:23 PM by 84.173.75.108 -
Added line 1:
'''Bestimmung der Eigenwerte und Eigenvektoren einer gegebenen Matrix M'''