LineareAlgebra.Abbildungen12 History

Hide minor edits - Show changes to markup

November 16, 2010, at 12:50 AM by 84.173.113.47 -
Deleted lines 2-33:

Bestimmung der Eigenwerte und Eigenvektoren einer gegebenen Matrix M

Es gilt: $$(M-\lambda\cdot E_n)\cdot\vec{w}=\vec{0}$$ Da \vec{w}=\vec{0} kann (M-\lambda\cdot E_n) nicht invertierbar sein. Ihre Determinante muss = 0 sein.

Im Beispiel: $$M-\lambda\cdot E_n = \left(\begin{array}{cc} 2&4\\0&3\end{array}\right)-\left(\begin{array}{cc} \lambda&0\\0&\lambda\end{array}\right)=\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)$$ $$det\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)=(2-\lambda)\cdot(3-\lambda)-4\cdot0$$

Hier kann man die Nullstellen \lambda_1 =2 und \lambda_2 =3 leicht ablesen.

Hat man Eigenwerte bestimmt, löst man danach das Gleichungssystem M\cdot \vec{x}=\lambda\cdot\vec{x}, um die Eigenvektoren zu bestimmen.

Beispiel: $$det\left(\begin{array}{cc} 3-\lambda&2\\1&-2-\lambda\end{array}\right)=(3-\lambda)\cdot(-2-\lambda)=2=\lambda^2-\lambda-8$$

pq- Formel anwenden: $$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}+{8}}$$ Man erhält für den Eigenwert \lambda_1 = \frac{1-\sqrt{33}}{2} und für den Eigenwert \lambda_2 =-\frac{1+\sqrt{33}}{2} .

Der \vec{v_1} zu \lambda_1 : $$M\cdot\vec{v}=\lambda_1\cdot\vec{v}$$ $$(M-\lambda\cdot E_n)\cdot\vec{w}=\vec{0}$$ $$\left[\left(\begin{array}{cc} 3&2\\1&-2\end{array}\right)-\left(\begin{array}{cc} \frac{1-\sqrt{33}}{2}&0\\0&\frac{1-\sqrt{33}}{2}\end{array}\right)\right]\cdot\left(\begin{array}{c} x\\y\end{array}\right)=\left(\begin{array}{c} 0\\0\end{array}\right)$$

Man erhält nun 2 lineare Gleichungssysteme, die man jeweils nach x und y auflöst.

Somit erhält man für den Vektor \vec{v_1}=\left(\begin{array}{c} 1\\\frac{-5+\sqrt{33}}{4}\end{array}\right)

Den Vektor \vec{v_2} zum Eigenwert \lambda_2 erhält man auf die gleiche Weise.

May 15, 2010, at 04:28 PM by 84.173.125.236 -
Changed lines 23-24 from:

Man bekommt für den Eigenwert \lambda_1 = \frac{1-\sqrt{33}}{2} und für den Eigenwert \lambda_2 =-\frac{1+\sqrt{33}}{2} .

to:

Man erhält für den Eigenwert \lambda_1 = \frac{1-\sqrt{33}}{2} und für den Eigenwert \lambda_2 =-\frac{1+\sqrt{33}}{2} .

May 15, 2010, at 04:27 PM by 84.173.125.236 -
Changed lines 23-24 from:

Man bekommt für den 1. Eigenwert \lambda_1 = \frac{1-\sqrt{33}}{2} und für den 2- Eigenwert \lambda_2 =-\frac{1+\sqrt{33}}{2} .

to:

Man bekommt für den Eigenwert \lambda_1 = \frac{1-\sqrt{33}}{2} und für den Eigenwert \lambda_2 =-\frac{1+\sqrt{33}}{2} .

Changed lines 32-34 from:

Somit erhält man für den \vec{v_1}=\left(\begin{array}{c} 1\\\frac{-5+\sqrt{33}}{4}\end{array}\right)

Den 2. Vektor \vec{v_2} zum 2.Eigenwert \lambda_2 erhält man auf die gleiche Weise.

to:

Somit erhält man für den Vektor \vec{v_1}=\left(\begin{array}{c} 1\\\frac{-5+\sqrt{33}}{4}\end{array}\right)

Den Vektor \vec{v_2} zum Eigenwert \lambda_2 erhält man auf die gleiche Weise.

May 15, 2010, at 04:26 PM by 84.173.125.236 -
Changed lines 23-24 from:

$$\lambda_1 = \frac{1-\sqrt{33}}{2}$$ und $$\lambda_2 =-\frac{1+\sqrt{33}}{2}$$

to:

Man bekommt für den 1. Eigenwert \lambda_1 = \frac{1-\sqrt{33}}{2} und für den 2- Eigenwert \lambda_2 =-\frac{1+\sqrt{33}}{2} .

May 15, 2010, at 04:24 PM by 84.173.125.236 -
Changed lines 23-24 from:

$$\lambda_1 = \frac{1-\sqrt{33}}{2}$} und {$\lambda_2 =-\frac{1+\sqrt{33}}{2}$$

to:

$$\lambda_1 = \frac{1-\sqrt{33}}{2}$$ und $$\lambda_2 =-\frac{1+\sqrt{33}}{2}$$

May 15, 2010, at 04:23 PM by 84.173.125.236 -
Changed lines 22-24 from:

$$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}+{8}}$} \lambda_1 = \frac{1-\sqrt{33}}{2} und {$\lambda_2 =-\frac{1+\sqrt{33}}{2}$$

to:

$$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}+{8}}$$ $$\lambda_1 = \frac{1-\sqrt{33}}{2}$} und {$\lambda_2 =-\frac{1+\sqrt{33}}{2}$$

May 15, 2010, at 04:22 PM by 84.173.125.236 -
Changed lines 11-15 from:

M-\lambda\cdot E_n = \left(\begin{array}{cc} 2&4\\0&3\end{array}\right)-\left(\begin{array}{cc} \lambda&0\\0&\lambda\end{array}\right)=\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)

det\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)=(2-\lambda)\cdot(3-\lambda)-4\cdot0

to:

$$M-\lambda\cdot E_n = \left(\begin{array}{cc} 2&4\\0&3\end{array}\right)-\left(\begin{array}{cc} \lambda&0\\0&\lambda\end{array}\right)=\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)$$ $$det\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)=(2-\lambda)\cdot(3-\lambda)-4\cdot0$$

Changed lines 19-21 from:

det\left(\begin{array}{cc} 3-\lambda&2\\1&-2-\lambda\end{array}\right)=(3-\lambda)\cdot(-2-\lambda)=2=\lambda^2-\lambda-8

to:

$$det\left(\begin{array}{cc} 3-\lambda&2\\1&-2-\lambda\end{array}\right)=(3-\lambda)\cdot(-2-\lambda)=2=\lambda^2-\lambda-8$$

Changed lines 22-25 from:

\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}+{8}} \lambda_1 = \frac{1-\sqrt{33}}{2} und \lambda_2 =-\frac{1+\sqrt{33}}{2}

to:

$$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}+{8}}$} \lambda_1 = \frac{1-\sqrt{33}}{2} und {$\lambda_2 =-\frac{1+\sqrt{33}}{2}$$

May 15, 2010, at 03:19 PM by 84.173.125.236 -
Changed lines 36-38 from:

Somit erhält man für den \vec{v_1}=\left(\begin{array}{c} 1\\\frac{-5+\sqrt{33}}{4}\end{array}\right)

to:

Somit erhält man für den \vec{v_1}=\left(\begin{array}{c} 1\\\frac{-5+\sqrt{33}}{4}\end{array}\right)

Den 2. Vektor \vec{v_2} zum 2.Eigenwert \lambda_2 erhält man auf die gleiche Weise.

May 15, 2010, at 03:16 PM by 84.173.125.236 -
Changed line 36 from:

Somit erhält man für den {$\vec{v_1}=\left(\begin{array}{c} 1\\\frac{-5+\sqrt{33}}{4}\end{array}\right)

to:

Somit erhält man für den \vec{v_1}=\left(\begin{array}{c} 1\\\frac{-5+\sqrt{33}}{4}\end{array}\right)

May 15, 2010, at 03:16 PM by 84.173.125.236 -
Added lines 33-36:

Man erhält nun 2 lineare Gleichungssysteme, die man jeweils nach x und y auflöst.

Somit erhält man für den {$\vec{v_1}=\left(\begin{array}{c} 1\\\frac{-5+\sqrt{33}}{4}\end{array}\right)

May 15, 2010, at 03:11 PM by 84.173.125.236 -
Changed line 32 from:

$$\left[\left(\begin{array}{cc} 3&2\\1&-2\end{array}\right)-\left(\begin{array}{cc} \frac{1-\sqrt{33}}{2}&0\\0&\frac{1-\sqrt{33}}{2}\end{array}\right)\right]\cdot\left(\begin{array}{c} x\\y\ende{array}\right)=\left(\begin{array}{c} 0\\0\ende{array}\right)$$

to:

$$\left[\left(\begin{array}{cc} 3&2\\1&-2\end{array}\right)-\left(\begin{array}{cc} \frac{1-\sqrt{33}}{2}&0\\0&\frac{1-\sqrt{33}}{2}\end{array}\right)\right]\cdot\left(\begin{array}{c} x\\y\end{array}\right)=\left(\begin{array}{c} 0\\0\end{array}\right)$$

May 15, 2010, at 03:10 PM by 84.173.125.236 -
Changed lines 30-35 from:

M\cdot\vec{v}=\lambda_1\cdot\vec{v}

(M-\lambda\cdot E_n)\cdot\vec{w}=\vec{0}

\left[\left(\begin{array}{cc} 3&2\\1&-2\end{array}\right)-\left(\begin{array}{cc} \frac{1-\sqrt{33}}{2}&0\\0&\frac{1-\sqrt{33}}{2}\end{array}\right)\right]

to:

$$M\cdot\vec{v}=\lambda_1\cdot\vec{v}$$ $$(M-\lambda\cdot E_n)\cdot\vec{w}=\vec{0}$$ $$\left[\left(\begin{array}{cc} 3&2\\1&-2\end{array}\right)-\left(\begin{array}{cc} \frac{1-\sqrt{33}}{2}&0\\0&\frac{1-\sqrt{33}}{2}\end{array}\right)\right]\cdot\left(\begin{array}{c} x\\y\ende{array}\right)=\left(\begin{array}{c} 0\\0\ende{array}\right)$$

May 15, 2010, at 03:04 PM by 84.173.125.236 -
Added line 30:
Added line 32:
Added line 34:
May 15, 2010, at 03:04 PM by 84.173.125.236 -
Changed line 32 from:

\left\[\left(\begin{array}{cc} 3&2\\1&-2\end{array}\right)-\left(\begin{array}{cc} \frac{1-\sqrt{33}}{2}&0\\0&\frac{1-\sqrt{33}}{2}\end{array}\right)\right\]

to:

\left[\left(\begin{array}{cc} 3&2\\1&-2\end{array}\right)-\left(\begin{array}{cc} \frac{1-\sqrt{33}}{2}&0\\0&\frac{1-\sqrt{33}}{2}\end{array}\right)\right]

May 15, 2010, at 03:02 PM by 84.173.125.236 -
Changed line 30 from:

{$M\cdot\vec{v}=\lambda_1\cdot\vec{v}

to:

M\cdot\vec{v}=\lambda_1\cdot\vec{v}

Changed line 32 from:

\left\[\left(\begin{array}{cc} 3&2\\1&-2\end{array}\right)-\left(\begin{array}{cc} \frac{1-\sqrt{33}}{2}&0\\0&\frac{1-\sqrt{33}}{2}\end{array}\right)\right\]$}

to:

\left\[\left(\begin{array}{cc} 3&2\\1&-2\end{array}\right)-\left(\begin{array}{cc} \frac{1-\sqrt{33}}{2}&0\\0&\frac{1-\sqrt{33}}{2}\end{array}\right)\right\]

May 15, 2010, at 03:01 PM by 84.173.125.236 -
Changed lines 29-32 from:

Der \vec{v_1} zu \lambda_1

to:

Der \vec{v_1} zu \lambda_1 : {$M\cdot\vec{v}=\lambda_1\cdot\vec{v} (M-\lambda\cdot E_n)\cdot\vec{w}=\vec{0} \left\[\left(\begin{array}{cc} 3&2\\1&-2\end{array}\right)-\left(\begin{array}{cc} \frac{1-\sqrt{33}}{2}&0\\0&\frac{1-\sqrt{33}}{2}\end{array}\right)\right\]$}

May 10, 2010, at 09:36 PM by 84.173.75.108 -
Added line 13:
May 10, 2010, at 09:36 PM by 84.173.75.108 -
Added line 11:
Added line 14:
May 10, 2010, at 09:35 PM by 84.173.75.108 -
Changed lines 11-12 from:

$$ M-\lambda\cdot E_n = \left(\begin{array}{cc} 2&4\\0&3\end{array}\right)-\left(\begin{array}{cc} \lambda&0\\0&\lambda\end{array}\right)=\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)$$ $$ det\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)=(2-\lambda)\cdot(3-\lambda)-4\cdot0$$

to:

M-\lambda\cdot E_n = \left(\begin{array}{cc} 2&4\\0&3\end{array}\right)-\left(\begin{array}{cc} \lambda&0\\0&\lambda\end{array}\right)=\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right) det\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)=(2-\lambda)\cdot(3-\lambda)-4\cdot0

May 10, 2010, at 09:35 PM by 84.173.75.108 -
Changed line 26 from:

Der {\vec{v_1}$} zu \lambda_1

to:

Der \vec{v_1} zu \lambda_1

May 10, 2010, at 09:34 PM by 84.173.75.108 -
Added line 22:
Changed lines 24-26 from:

\lambda_1 = \frac{1-\sqrt{33}}{2} und \lambda_2 =-\frac{1+\sqrt{33}}{2}

to:

\lambda_1 = \frac{1-\sqrt{33}}{2} und \lambda_2 =-\frac{1+\sqrt{33}}{2}

Der {\vec{v_1}$} zu \lambda_1

May 10, 2010, at 09:32 PM by 84.173.75.108 -
Added line 18:
Added line 20:
May 10, 2010, at 09:32 PM by 84.173.75.108 -
Changed line 18 from:

$$ det\left(\begin{array}{cc} 3-\lambda&2\\1&-2-\lambda\end{array}\right)=(3-\lambda)\cdot(-2-\lambda)=2=\lambda^2-\lambda-8$$

to:

det\left(\begin{array}{cc} 3-\lambda&2\\1&-2-\lambda\end{array}\right)=(3-\lambda)\cdot(-2-\lambda)=2=\lambda^2-\lambda-8

Changed line 20 from:

$$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}+{8}}$$

to:

\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}+{8}}

May 10, 2010, at 09:31 PM by 84.173.75.108 -
Changed lines 20-21 from:

$$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}+{8}}$$

to:

$$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}+{8}}$$ \lambda_1 = \frac{1-\sqrt{33}}{2} und \lambda_2 =-\frac{1+\sqrt{33}}{2}

May 10, 2010, at 09:28 PM by 84.173.75.108 -
Changed line 20 from:

$$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}{8}}$$

to:

$$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}+{8}}$$

May 10, 2010, at 09:27 PM by 84.173.75.108 -
Changed line 20 from:

$$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}{8}}

to:

$$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}{8}}$$

May 10, 2010, at 09:27 PM by 84.173.75.108 -
Changed line 20 from:

$$\lambda_{1/2} = \frac{1}{2}$$ \frac{+}{-}

to:

$$\lambda_{1/2} = \frac{1}{2} +/- \sqrt{{\frac{1}{4}}{8}}

May 10, 2010, at 09:26 PM by 84.173.75.108 -
Changed line 20 from:

$$\lambda_{1/2} = \frac{1}{2}$$

to:

$$\lambda_{1/2} = \frac{1}{2}$$ \frac{+}{-}

May 10, 2010, at 09:25 PM by 84.173.75.108 -
Changed line 20 from:

$$\lambda_1/2 = \frac{1}{2}$$

to:

$$\lambda_{1/2} = \frac{1}{2}$$

May 10, 2010, at 09:24 PM by 84.173.75.108 -
Changed line 20 from:

$$\lambda_1_,_2 = \frac{1}{2}$$

to:

$$\lambda_1/2 = \frac{1}{2}$$

May 10, 2010, at 09:24 PM by 84.173.75.108 -
Changed line 20 from:

$$\lambda_"1,2" = \frac{1}{2}$$

to:

$$\lambda_1_,_2 = \frac{1}{2}$$

May 10, 2010, at 09:23 PM by 84.173.75.108 -
Changed line 20 from:

$$\lambda_(1,2) = \frac{1}{2}$$

to:

$$\lambda_"1,2" = \frac{1}{2}$$

May 10, 2010, at 09:23 PM by 84.173.75.108 -
Changed line 20 from:

$$\lambda_1,2 = \frac{1}{2}$$

to:

$$\lambda_(1,2) = \frac{1}{2}$$

May 10, 2010, at 09:23 PM by 84.173.75.108 -
Changed line 20 from:

$$\lambda_1,2 = \frac{1}\frac{2}$$

to:

$$\lambda_1,2 = \frac{1}{2}$$

May 10, 2010, at 09:22 PM by 84.173.75.108 -
Changed line 20 from:

$$\lambda_1,2 = \frac{1}\frac{2}

to:

$$\lambda_1,2 = \frac{1}\frac{2}$$

May 10, 2010, at 09:22 PM by 84.173.75.108 -
Changed lines 18-20 from:

$$ det\left(\begin{array}{cc} 3-\lambda&2\\1&-2-\lambda\end{array}\right)=(3-\lambda)\cdot(-2-\lambda)=2=\lambda^2-\lambda-8$$

to:

$$ det\left(\begin{array}{cc} 3-\lambda&2\\1&-2-\lambda\end{array}\right)=(3-\lambda)\cdot(-2-\lambda)=2=\lambda^2-\lambda-8$$ pq- Formel anwenden: $$\lambda_1,2 = \frac{1}\frac{2}

May 10, 2010, at 09:16 PM by 84.173.75.108 -
Changed line 18 from:

$$ det\left(\begin{array}{cc} 3-\lambda&2\\1&-2-\lambda\end{array}\right)=(3-\lambda)\cdot(-2-\lambda)=2=\lambda^2-\lambda-8

to:

$$ det\left(\begin{array}{cc} 3-\lambda&2\\1&-2-\lambda\end{array}\right)=(3-\lambda)\cdot(-2-\lambda)=2=\lambda^2-\lambda-8$$

May 10, 2010, at 09:16 PM by 84.173.75.108 -
Added lines 16-18:

Beispiel: $$ det\left(\begin{array}{cc} 3-\lambda&2\\1&-2-\lambda\end{array}\right)=(3-\lambda)\cdot(-2-\lambda)=2=\lambda^2-\lambda-8

May 10, 2010, at 09:10 PM by 84.173.75.108 -
Changed line 6 from:

$M-\lambda\cdot E_n\cdot\vec{w}=\vec{0}$$

to:

$$(M-\lambda\cdot E_n)\cdot\vec{w}=\vec{0}$$

May 10, 2010, at 09:09 PM by 84.173.75.108 -
Changed line 6 from:

$$(M-\lambda\cdot E_n)\cdot\vec{w}=\vec{0}$$

to:

$M-\lambda\cdot E_n\cdot\vec{w}=\vec{0}$$

May 10, 2010, at 09:09 PM by 84.173.75.108 -
Changed lines 3-4 from:

Bestimmung der Eigenwerte und Eigenvektoren einer gegebenen Matrix M

to:

Bestimmung der Eigenwerte und Eigenvektoren einer gegebenen Matrix M

Changed lines 13-15 from:

Hieraus ergeben sich für den Eigenwert_1 \lambda_1 =3

to:

Hier kann man die Nullstellen \lambda_1 =2 und \lambda_2 =3 leicht ablesen.

Hat man Eigenwerte bestimmt, löst man danach das Gleichungssystem M\cdot \vec{x}=\lambda\cdot\vec{x}, um die Eigenvektoren zu bestimmen.

May 10, 2010, at 09:04 PM by 84.173.75.108 -
Added line 2:
May 10, 2010, at 09:04 PM by 84.173.75.108 -
Changed lines 1-4 from:

Bestimmung der Eigenwerte und Eigenvektoren einer gegebenen Matrix M

\documentclass{article} \begin{document}

to:

<< Abbildungen12 >> Bestimmung der Eigenwerte und Eigenvektoren einer gegebenen Matrix M

Deleted line 4:

\end{document}

Changed lines 6-12 from:

\documentclass{article} \begin{document} Da \end{document}\vec{w}=\vec{0}$$ kann $$(M-\lambda\cdot E_n)$$ nicht invertierbar sein. Ihre Determinante muss = 0 sein.

\documantclass{article} \begin{document}

to:

Da \vec{w}=\vec{0} kann (M-\lambda\cdot E_n) nicht invertierbar sein. Ihre Determinante muss = 0 sein.

Deleted line 9:

\end{document}

Changed line 12 from:

Hieraus ergeben sich für den Eigenwert_1 \lambda_1 =3

to:

Hieraus ergeben sich für den Eigenwert_1 \lambda_1 =3

May 10, 2010, at 08:55 PM by 84.173.75.108 -
Changed line 3 from:

\documantclass{article}

to:

\documentclass{article}

Changed line 8 from:

\documantclass{article}

to:

\documentclass{article}

May 10, 2010, at 08:55 PM by 84.173.75.108 -
Added lines 3-4:

\documantclass{article} \begin{document}

Added line 6:

\end{document}

Changed lines 8-9 from:

Da $$\vec{w}=\vec{0}$$ kann $$(M-\lambda\cdot E_n)$$ nicht invertierbar sein. Ihre Determinante muss = 0 sein.

to:

\documantclass{article} \begin{document} Da \end{document}\vec{w}=\vec{0}$$ kann $$(M-\lambda\cdot E_n)$$ nicht invertierbar sein. Ihre Determinante muss = 0 sein.

\documantclass{article} \begin{document}

Added line 16:

\end{document}

May 10, 2010, at 08:49 PM by 84.173.75.108 -
Changed lines 8-10 from:

$$ M-\lambda\cdot E_n = \left(\begin{array}{cc} 2&4\\0&3\end{array}\right)-\left(\begin{array}{cc} \lambda&0\\0&\lambda\end{array}\right)=\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)$$

to:

$$ M-\lambda\cdot E_n = \left(\begin{array}{cc} 2&4\\0&3\end{array}\right)-\left(\begin{array}{cc} \lambda&0\\0&\lambda\end{array}\right)=\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)$$ $$ det\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)=(2-\lambda)\cdot(3-\lambda)-4\cdot0$$ Hieraus ergeben sich für den Eigenwert_1 \lambda_1 =3

May 10, 2010, at 08:46 PM by 84.173.75.108 -
Added line 6:
May 10, 2010, at 08:46 PM by 84.173.75.108 -
Changed line 7 from:

$$ M-\lambda\cdot E_n = \left(\begin{array}{cc} 2&4\\0&3\end{array}\right)-\left(\begin{array}{cc} \lambda&0\\0&\lambda\end{array}\right)=\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)

to:

$$ M-\lambda\cdot E_n = \left(\begin{array}{cc} 2&4\\0&3\end{array}\right)-\left(\begin{array}{cc} \lambda&0\\0&\lambda\end{array}\right)=\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)$$

May 10, 2010, at 08:46 PM by 84.173.75.108 -
Changed line 5 from:

Da #\vec{w}=\vec{0}# kann #(M-\lambda\cdot E_n)# nicht invertierbar sein. Ihre Determinante muss = 0 sein.

to:

Da $$\vec{w}=\vec{0}$$ kann $$(M-\lambda\cdot E_n)$$ nicht invertierbar sein. Ihre Determinante muss = 0 sein.

May 10, 2010, at 08:45 PM by 84.173.75.108 -
Changed line 5 from:

Da \vec{w}=\vec{0} kann (M-\lambda\cdot E_n) nicht invertierbar sein. Ihre Determinante muss = 0 sein.

to:

Da #\vec{w}=\vec{0}# kann #(M-\lambda\cdot E_n)# nicht invertierbar sein. Ihre Determinante muss = 0 sein.

May 10, 2010, at 08:38 PM by 84.173.75.108 -
Changed line 5 from:

Da [\vec{w}=\vec{0}] kann (M-\lambda\cdot E_n) nicht invertierbar sein. Ihre Determinante muss = 0 sein.

to:

Da \vec{w}=\vec{0} kann (M-\lambda\cdot E_n) nicht invertierbar sein. Ihre Determinante muss = 0 sein.

May 10, 2010, at 08:38 PM by 84.173.75.108 -
Changed line 5 from:

Da \vec{w}=\vec{0} kann (M-\lambda\cdot E_n) nicht invertierbar sein. Ihre Determinante muss = 0 sein.

to:

Da [\vec{w}=\vec{0}] kann (M-\lambda\cdot E_n) nicht invertierbar sein. Ihre Determinante muss = 0 sein.

May 10, 2010, at 08:37 PM by 84.173.75.108 -
Changed line 5 from:

Da $\vec{w}=\vec{0}$ kann $(M-\lambda\cdot E_n)$ nicht invertierbar sein. Ihre Determinante muss = 0 sein.

to:

Da \vec{w}=\vec{0} kann (M-\lambda\cdot E_n) nicht invertierbar sein. Ihre Determinante muss = 0 sein.

May 10, 2010, at 08:36 PM by 84.173.75.108 -
Changed line 5 from:

Da $$\vec{w}=\vec{0}$$ kann $$(M-\lambda\cdot E_n)$$ nicht invertierbar sein. Ihre Determinante muss = 0 sein.

to:

Da $\vec{w}=\vec{0}$ kann $(M-\lambda\cdot E_n)$ nicht invertierbar sein. Ihre Determinante muss = 0 sein.

May 10, 2010, at 08:36 PM by 84.173.75.108 -
Changed lines 4-7 from:

$$(M-\lambda\cdot E_n)\cdot\vec{w}=\vec{0}$$

to:

$$(M-\lambda\cdot E_n)\cdot\vec{w}=\vec{0}$$ Da $$\vec{w}=\vec{0}$$ kann $$(M-\lambda\cdot E_n)$$ nicht invertierbar sein. Ihre Determinante muss = 0 sein. Im Beispiel: $$ M-\lambda\cdot E_n = \left(\begin{array}{cc} 2&4\\0&3\end{array}\right)-\left(\begin{array}{cc} \lambda&0\\0&\lambda\end{array}\right)=\left(\begin{array}{cc} 2-\lambda&4\\0&3-\lambda\end{array}\right)

May 10, 2010, at 08:31 PM by 84.173.75.108 -
Changed line 4 from:

$$M\cdot\vec{w}=\lambda\cdot\vec{w}$$

to:

$$(M-\lambda\cdot E_n)\cdot\vec{w}=\vec{0}$$

May 10, 2010, at 08:30 PM by 84.173.75.108 -
Changed line 4 from:

M\cdot\vec{w}=\lambda\cdot\vec{w}

to:

$$M\cdot\vec{w}=\lambda\cdot\vec{w}$$

May 10, 2010, at 08:29 PM by 84.173.75.108 -
May 10, 2010, at 08:29 PM by 84.173.75.108 -
Changed line 4 from:

M-\lambda\cdotE_n\cdot\vec{w}=\vec{0}

to:

M\cdot\vec{w}=\lambda\cdot\vec{w}

May 10, 2010, at 08:29 PM by 84.173.75.108 -
Changed line 4 from:

(M-\lambda\cdotE_n)\cdot\vec{w}=\vec{0}

to:

M-\lambda\cdotE_n\cdot\vec{w}=\vec{0}

May 10, 2010, at 08:28 PM by 84.173.75.108 -
Changed line 4 from:

(M-\lambda E_n) * \vec w = \vec 0

to:

(M-\lambda\cdotE_n)\cdot\vec{w}=\vec{0}

May 10, 2010, at 08:26 PM by 84.173.75.108 -
Changed lines 1-4 from:

Bestimmung der Eigenwerte und Eigenvektoren einer gegebenen Matrix M

to:

Bestimmung der Eigenwerte und Eigenvektoren einer gegebenen Matrix M

Es gilt: (M-\lambda E_n) * \vec w = \vec 0

May 10, 2010, at 08:23 PM by 84.173.75.108 -
Added line 1:

Bestimmung der Eigenwerte und Eigenvektoren einer gegebenen Matrix M